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ABSTRACT

The accuracy of a simple, well-known approximation to the solution of the
adiabatic explosion problem is examined, and it is shown that, with a minor modi-
fication, the approximation can be converted to a form accurate to 1% or better for
a wide range of the input parameters. The final result lies well within the capabilities
of even the simpler scientific calculators. The effects of depletion of the reactant and

a temperature-dependent heat capacity, not included in the development, are briefly
evaluated.

INTRODUCTION

The differential equation describing the time—temperature history of an isolated
svstem in which a substance is undergoing an mth-order exothermal decomposition
with an Arrhenius temperature dependence is
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where ¢, Q, Z, and E are the heat capacity, heat of reaction, pre-exponential factor,
and activation energy, respectively, R is the gas constant, @ is the absolute temper-
ature, z is the time, and 2 is the fraction of the substznce decomposed (constant
factors involving concentration unit, have been absorbed into Z). In the most general
case, ¢, and possibly Q, will depend on temperature, while 2 can be expressed as a
function of temperature through the equation
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On rearranging and integrating (1) we obtain
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as the equation defining T(¢) given the initial condition 8 = T, at ¢t =90.



An exact, explicit form for the right-hand side of eqn (3) has not been obtained,
but a number of approximate solutions, of varying degrees of accuracy and com-
plexity, have been proposed!. For the special case ¢ and Q constant and m=0, a
convenient and useful approximation is
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If only the explosion time (not the time-temperature history) is desired, then T> T,
and eqn (4) reduces further to the familiar result
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In this paper we examine the accuracy of egns (4) and (5) and show how, with
a minor modification, they can be converted to forms of more than adequate accuracy
for a wide range of the parameters E, T,, and 7.

)

THEORY

For c and Q constant and 1 =0 eqn (3) becomes
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where x= £/R. A common way of obtaining eqn (4) from equ (6) is to make the

substitution x = z/6. We then have
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In the integrand, the exponential is the dominant term, and hence we can write
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The result given In eqn (8) can be derived in a more illuminating way by
integrating the series expansion of the exponential. Since the series converges uni-
formly on any closed interval not containing 0, it can be integrated term by term to
obtain the result
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The individual terms in the infinite series can be written
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For values of 2 and T, of practical interest, x/To>1. Thus the terms of the series
increase with n until 2/nTy~ 1, after which they decrease monotonically. More
precisely, if a,. is the largest term in the sum, then a,..,/a,-<l and a,._,/a,. <1
jointly imply
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Setting n’ = aT,—2.7 will suffice for our purposes. For example, for 2 = 23000 and
T, =500 K, n" =~ 43. This suggests that, with little error, we can write
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Introducing this result, and the corresponding result for the series in 7, in eqn (9) we
obtain
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It is now in order to insert some typical values for «, 7y, and T in eqn (13) and
examine the magnitudes of the various terms on the right-hand side of this equation.
Thus, for 2=23000, T,=500K, and T=3510K, we have 2(7T—T,)=20.
(T>—T3/x=04, alnT/Ty=455, (Tifx)e*'To=1.032x10%!, and (T*x)e’T=
4.36x 10%°. It is thus clear that all but the last two terms can be discarded with
negligible error, and we again have the result given in eqn (8). However, we are now
in a position to estimate the error involved in using this approximation, for by far its
largest contribution came from replacing n(n+1)! by (n+2)! to obtain the result
given in eqn (12). Since the principal contributions to the sum come from terms near
the maximum, it can be seen from the discussion in the preceding paragraph that the
error is given approximately by r’/(n’ +2) where n’ = 2/T(—2.7; or, alternativeiy, the
error from this source can largely be eliminated by using the more accurate equation*
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*The correction obviously undercorrects terms for which n<n’ and overcorrects terms for which
n>n’, being most accurate for the largest terms in the sum. Little is gained by using a different value
of n’ for the term in T
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When T is sufficiently large in comparison with T, the last term in eqn (13) can also
be omitted, and eqn (14) then becomes
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In Table 1 the results given by eqns (8) and (14) are compared, in terms of
percentage errors, with the results obtained by a numerical evaluation of the right-
hand side of eqn (9) for selected values of a, T, and 7 covering the range of practical
interest. The T = 3000 values also represent the percentage errors in explosion times
as calculated from F, and the equivalent part of F,. The errors in F; are negligible,
while those in F,; range as high as 18%.

TABLE 1

PERCENTAGE ERRORS OF F; AND F; FOR VARIOUS VALUES OF
a2, To, AND T=To+AT
(1) =100 (F, — F2)/F:; (2) = 100 (F3— F2)/F3.

Ty
x AT 400 600 800
€)) ) 0 2) N (€)
10 COO 1 —8.0 0.2 —12.0 0.6 —16.0 1.1
10 —8.1 0.2 —12.1 0.5 —16.1 1.0
100 —8.4 —0.1 —12.6 —0.1 —16.8 0.7
T = 3000 —84 —-0.2 —-13.0 —0.5 —18.1 —1.4
20 000 1 —4.0 0.1 —6.0 0.1 —8.0 0.2
10 —4.0 0.0 —6.0 0.1 —8.0 0.2
100 —4.1 0.0 —6.2 —-0.1 —83 —0.1
T = 3000 —4.1 0.0 —6.2 —-0.1 —84 -0.2
30000 1 —2.7 0.0 —4.0 0.1 —3.3 0.1
10 =27 0.0 -4.0 0.0 —~54 0.1
100 —-27 0.0 —4.1 0.0 —5.5 0.0
T=3 —2.7 00 —4.1 0.0 —55 —01

The question naturally arises as to whether some of the other approximations
we have made introduce larger errors than those we have corrected. We have, for
example, ignored depletion of the reactant, taking m=0. If m=1, with ¢ and Q
constant, eqn (3) becomes
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Letting 1, = < e"®df and 1, = — [ 4e%°d0 we obtain, after some manipula-
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from which the effect of depletion of reactant can be evaluated. For small x and large
T, the effect can be large, with 7; =~ 0.27,. For the more usual values of x, however,
the error caused by ignoring depletion is much smaller, typically a percent or so in 7.
Unfortunately, the depletion error and the error associated with the use of F; are in
the same direction, so there is still merit in the use of F; rather than F,.

For a temperature-dependent heat capacity, with m=0 and c=a+bT,
eqn (3) becomes
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As an example we have evaluated, for RDX, eqns (6), (17), and (18) with
 e*®d0 = F, and with | ¢¥/°d0 = F;. The parameters used are’:

T, = 460K

ax = 2.3716x10* K

Z =202x10"%sec™?!

Q = 500calg™?

c =0035+72x1074*T(K)calg 1 -K™!

TABLE 2

CALCULATED VALUES OF 7 (sec)

T F:x10-22 cF/QZ cF3IQZ (U7)* (18)*
461 2.3261 843 8.4 8.44 8.44
462 4.4067 15.98 15.99 15.99 16.01
464 7.9351 28.77 28.79 28.81 28.88
466 10.766 39.04 39.06 39.12 39.26
470 14873 53.93 5395 54.09 54.36
475 18.055 65.46 65.49 65.74 66.22
480 19.935 72.28 72.30 72.64 75.26
500 22.504 81.23 81.24 81.75 82.63
550 22.835 82.79 82.80 83.38 84.36
700 22842 82.82 82.82 83.40 84.38

1000 22.842 82.82 82.82 83.40 84.38

* With [T c~*do=F;.
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The value of ¢ at 460 K (0.3662) was used in eqns (6), (17), and cF3/QZ. The results
for various values of T are given in Table 2. The explosion time obtained from F., or
F, is 82.8 sec. With depletion this increases to 83.4 sec. With a temperature-dependent
heat capacity (no depletion) the explosion time becomes 84.4 sec. Note that, because
of the excellent agreement between columns 3 and 4 in Table 2, we can use F; in place
of F, in either eqn (17) or (18). The error resulting from the use of a constant heat
capacity could, of course, be reduced by using a value corresponding to a temperature
somewhat higher than T,. Further refinements are hardly justified, however, because
of the uncertainities in the various thermochemical and kinetics constants.

CONCLUSION

We have derived a relatively simple and accurate approximation to the solution
of the adiabatic explosion problem. If desired, a temperature-dependent heat capacity
or depletion of the reactant by a first-order reaction can be included without unduly
complicating the calculation.
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